Instead of unsubstituting \(u\) values for \(x\) values, definite intergrals may be computed by also substituting \(x\) values in the bounds with \(u\) values. Use this idea to complete the following solution:
\begin{align*}
\int_1^3 x^2e^{x^3}\,dx &&\text{Let }&u=\unknown\\
&&&du = 3x^2\,dx\\
&&&\frac{1}{3}du = x^2\,dx\\
\int_1^3 x^2e^{x^3}\,dx &= \int_{x=1}^{x=3} e^{(x^3)} (x^2\,dx)\\
&= \int_{u=\unknown}^{u=\unknown} e^{u} \frac{1}{3}du\\
&= \left[\frac{1}{3}e^{u}\right]_{\unknown}^{\unknown}\\
&= \unknown
\end{align*}