Here is how one might write out the explanation of how to find \(\displaystyle\int \frac{3}{x\sqrt{49x^2-4}} \,dx\) from start to finish:
\begin{align*}
\int \frac{3}{x\sqrt{49x^2-4}} \,dx &&\text{Let }&u^2=49x^2\\
&&\text{Let }&a^2=4 \\
&&& u = 7x\\
&&& \,du = 7\,dx\\
&&& \frac{1}{7}\,du = \,dx\\
&&& a = 2\\
\int \frac{3}{x\sqrt{49x^2-4}} \,dx &= 3\int \frac{1}{x\sqrt{49x^2-4}} (\,dx)\\
&= 3\int \frac{1}{\frac{u}{7}\sqrt{u^2-a^2}} \bigg(\frac{1}{7}\,du\bigg)\\
&= 3\int \frac{1}{u\sqrt{u^2-a^2}} \,du & \text{which best matches f.}\\
&= 3\bigg(\frac{1}{a}\arcsec \bigg(\frac{u}{a}\bigg)\bigg)+C\\
&= \frac{3}{2}\arcsec \bigg(\frac{7x}{2}\bigg)+C
\end{align*}